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1. INTRODUCTION 

THE PRESENT paper is a continuation of a previous work [ 1] to 
find a better asymptote for heat transfer at small Prandtl 
number. The conventional approach is to assume that the 
velocity boundary layer is negligibly thin and a uniform 
velocity field, shown in Fig. la, is applied in the entire region of 
the energy equation. Obviously, the uniform velocity field 
leads to an unrealistic slip condition on the wall, which results 
in a non-vanishing convective term, and the heat transfer rate 
is always overestimated. In the previous approach, called the 
two-region model, it was found that within the velocity 
boundary layer, the convective heat transfer terms are 
negligible compared to conductive term and the velocity field 
is displaced into a step change, shown in Fig. lb. Within the 
velocity boundary layer, the velocity field vanishes, and 
becomes uniform beyond the layer. Although the two-region 
model yields a much better prediction, it also leads to an 
underestimation, resulting from neglection of the convective 
terms. 
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Fm.1. Velocity fields of (a) the conventional asymptote ; (b) the 
two-region model Cl] ; and (c) the present model. 

Since the conventional asymptote always overestimates 
and the two-region model always underestimates, any reason- 
able assumption for the velocity field that lies between these 
two models should result in a heat transfer rate that falls 
between over- and underestimation, and, hopefully, this may 
lead to a better prediction. To make an explicit solution 
possible, a linear velocity profile within the velocity boundary 
layer is chosen, as shown in Fig. lc. On the other hand, since 
the present theory lies between the two extremes, there is no 
guarantee as to whether it will over- or underestimate. 

the energy equation is given by 

dT aT 
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For the case of uniform wall 
conditions are 

@T 

=aayz. 
(1) 

temperature, the boundary 

2. ANALYSIS 

y = 0, T = T, (2) 

Y-+co, T= T,. (3) 

When the fluid properties are considered uniform and the The velocity component in the x-direction, u, is assumed to 
heat generation due to viscous dissipation is negligible [l], be linear within the velocity boundary layer and uniform 
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NOMENCLATURE 

B angle factor of the wedge 
? dimensionless variable defined by equation (14) 
v kinetic viscosity Cm’ s-i] 
I- gamma function 

e 
displacement boundary-layer thickness [m] 
dimensionless variable defined by equation (12). 

constant defined by equation (9) 
constant defined by equation (8) [rniem s-i] 
heat transfer coefficient [J m-’ s-i K-i] 
thermal conductivity [J m-l s-i K-r] 
exponent defined by equation (8) 
Nusselt number 
Prandtl number 
heat flux in the y-direction [J mm2 s-i] 
Reynolds number Subscripts 
temperature [K] W condition on the wall 
velocity component in the x-direction [m s-i] x local value at position x 
velocity component in the y-direction [m s-i] 
coordinate along the wedge [m] s” 

condition in the bulk flow 
condition at the position of 6. 

coordinate normal to the wedge [ml. 

symbols 
thermal diffusivity cm2 s-i] 

Superscript 
* pseudo-boundary condition. 
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beyond the layer, To have a continuous temperature, it is necessary that 

Y 
u=u,(x,so) OCYCG 

I4 = u,(x), y > 6. 

(4) T;-T: ___= l_- 
T,--T*, 

exp (-$) dtl (18) 

(5) where 
The velocity component in the y-direction, u, can be obtained 
by integrating the continuity equation, 

Y’ d u, 
0 

‘la = [;(m+l,Pr]L’3. 

“=-zz s 
O<y<6 (@ To have a continuous heat flux, from equation (11), 

\ , 

dum ll=-ydx y>6. 
qlycd = k (T; - T,) 5 “‘(Rex Prp 

( > 
(19) 

For a wedge of angle Bn, the potential flow is given by from equation (17), 

k 
(8) qlYca = -(T,-T*,) 

and S was defined [l] as the displacement thickness, 
x 

exp (-vi) 

[ 

(m + 1) Re3,2 Pr 1 II3 
6(x) = a * x * Re; I/‘. (9) 

Xp12n” U4/3) 
(20) 

Values of the constant a for various wedge angles were listed in 
ref. [l]. it is necessary that equations (19) and (20) be equal, 

The solutions of the energy equation within the velocity 
boundary layer and beyond the layer are obtained separately T,Z-T, exp ( - d) 
by applying different velocity fields of equations (4~(7) in 
different regions. With velocity field of equations (5) and (7), 

T,-T*, l-(4/3)x-i’*[(12a)*(m+ 1)Pr]‘/6’ (21) 

boundary condition (3) and a pseudo-boundary condition Heat flux on the wall is given by 

the 

y=6, T=T,f (10) 

energy equation beyond the layer is integrated [l] to 

T-T, 
PC 
T,*-T, 

1-L ‘exp(-c*)d[ 
J- s 

(11) 
n 0 

1 
113 

= h,(T, - T,). (22) 

Combine equations (18), (21) and (22), 

Nu, = 
(m+ l)“‘(Re, Pr/n)“’ 

n-1/2[(12u)Z(m+1)Pr]i/6 *‘exp(-$)dq+exp(-vi)’ 
s 0 

(23) 

where 
Y-6 

c = -(m + 1)1/2(Re,Pr)1/2. 
2x 

(12) 

With equations (I), (4) and (6), the energy equation within the 
velocity boundary layer becomes 

(13) 

By introducing another combined variable 

4=y[~~“=f[~Re~/*pT]li’ (14) 

equation (13) is transformed to 

d”T+3@Lo. 
dr? drl 

With another pseudo-boundary condition 

y=co, T=TI, (16) 

and the boundary condition of equation (2), equation (15) can 
be integrated to 

T-T: 1 ‘I 

- = ’ - r(4/3) o T,-T*, -_s ew(-?)dv. (17) 

The two pseudo-boundary conditions, equations (10) and 
(16), can be eliminated by matching the inner and outer 
solutions,(l l)and(l7).Thematchingprocessrequires that the 
temperature and the heat flux be continuous at the boundary, 
y = 6. 

3. SOLUTIONS AT EXTREME VALUES 
OF PRANDTL NUMBER 

As the Prandtl number approaches zero, the first term of the 
denominator in equation (23) vanishes and the second term 
approaches unity. Therefore, 

Nu, = (m + l)“*(Pr Re&r)“*, Pr + 0 (24) 

which reduces to the conventional asymptote. This indicates 
that equation (23) is also an asymptotic solution for small 
Prandtl numbers. 

On the other hand, as the Prandtl number approaches 
infinity, the second term in the denominator vanishes and the 
integration term approaches I(4/3). Therefore, 

1 
~ Re”* Pr1/3, 
r(4/3) x 

Pr + co. 

(25) 

Equation (25) yields a correct dependence of l/3 power on the 
Prandtl number, though the proportional constant is 
inaccurate. For the example of a flat plate, the proportional 
constant given by (25) is 0.408 while the exact solution is 0.339. 

4. RESULTS AND DISCUSSION 

Calculations of equation (23) for the special case of a flat 
plate, /3 = 0, for a wide range of Prandtl numbers, 0.001-100, 
are compared with the numerical data of the exact solution [2] 
in Fig. 2. In this figure, equation (23) is represented by a solid 
line and the exact solution by open circles connected with a 
broken line. It is seen that the two lines coincide up to Pr = 1, 
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FIG. 2. Comparison of the exact solution and equation (23) for 
the case of a flat plate, b = 0. 

start to diverge for larger Prandtl numbers and, finally, 
become parallel to each other at a sufficiently large Prandtl 
number. For Pr Q 1, the maximum error of 70% by the 
conventional asymptote was reduced to 13% by the two- 
region model [l] and it is further reduced to only 0.8% by the 
present theory. The accuracy is dramatically improved, 
particularly in the range of 0.1 6 Pr Q 1. It should also be 
noticed that the present theory converges faster than the other 
two asymptotes at a small Prandtl number. 

Calculations also indicate that the present theory shifts 
from underestimation to overestimation between Prandtl 
numbers of 0.8 and 1.0, which implies that there is one point 
between these two values at which the present theory and the 
exact solution yield identical values. Since equation (23) is an 
asymptote for small Prandtl numbers, as indicated by (24), it 
also matches the exact solution asymptotically at zero Prandtl 
number. Therefore, the present theory matches the exact 
solution at two points. On the other hand, the two-region 
model and conventional asymptote both match the exact 
solution asymptotically at zero Prandtl number, but deviate 
ever afterwards, with the two-region model always 
underestimating and the convectional asymptote over- 
estimating. In the sense of the number of points matching the 
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exact solution, the two-region model and the conventional 
asymptoteareoffirst-order,and thepresent theoryisasecond- 
order asymptote. 

For an accelerating flow, B > 0, the present theory also 
yields better predictions and converges faster than the other 
two asymptotes. For instance, the maximum error for the case 
of /3 = 2 for Pr < 1 is 2.5x, compared to 5.6% by the two- 
region model [l] and 32% by the conventional asymptote. For 
a decelerating flow when the diverging angle is not too large, 
the present theory again gives better predictions. For Pr < 1, 
the maximum error is 3.3% for a = -0.1, compared to 15% by 
the two-region model, and 8.4% for fi = - 0.16, compared to 
16% [l]. However, for a strong decelerating flow, /I = 
-0.198838, the present theory yields results with about the 
same accuracy as the two-region model up to Pr = 0.1, but 
becomes less accurate for larger Prandtl numbers. At Pr = 1, 
the error is 26% compared to 15% for the previous model. 

It is interesting to see that the present theory has its best 
prediction for the case of a flat plate. This can be explained by 
the following argument. 

Since the heat transfer rate depends strongly on the velocity 
field close to the wall, a good velocity simulation in this region 
is essential to the heat transfer rate prediction. Under the non- 
slip and impermeable conditions, the velocity boundary-layer 
equation on the wall becomes 

du, 

y=O=-um dx’ 

For the special case of a flat plate, du,/dx = 0, the second 
derivative is identical to zero. This indicates that the velocity 
profile close to the wall can be well approximated by a linear 
profile. Incidentally, as a linear profile is assumed in the 
velocity boundary layer by the present theory, there is good 
reason to believe that the present theory is at its best for the 
case of a flat plate. 
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1. INTRODUCTION flow field which, after it originates in the vicinity of the line 
source, penetrates the unbounded porous surroundings. In 

Trm PREsBm paper aims to analyze an important fundamental addition to its fundamental nature, the present problem finds 
problem in porous media natural convection: the pheno- practical applications illustrated by the spreading of chemical 
menon of time-dependent heat, mass and fluid flow induced by pollutants generated by exothermic reactions in the earth’s 
a horizontal line source producing simultaneously heat and a crust, the chemical industry, the disposal of nuclear wastes and 
chemical species. The study will determine the effect of the the natural convection cooling of buried electrical cables. 
presence of the chemical species on the main features of the Previous studies of natural convection from a line source 


